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Abstract.

Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the

environment. Such particles may have different concentrations of chemical fluorophores and will provide different responses in

the presence of ultraviolet light which potentially could be used to discriminate between different types of biological aerosol.

Development of ultraviolet light induced fluorescence (UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sen-5

sor (WIBS) has made is possible to collect size, morphology and fluorescence measurements in real-time. However, it is unclear

without studying responses from the instrument in the laboratory, the extent to which we can discriminate between different

types of particles. Collection of laboratory data is vital to validate any approach used to analyse the data and to ensure that the

data available is utilised as effectively as possible.

In this manuscript we test a variety of methodologies on traditional reference particles and a range of laboratory generated10

aerosols. Hierarchical Agglomerative Clustering (HAC) has been previously applied to UV-LIF data in a number of studies and

is tested alongside other algorithms that could be used to solve the classification problem: Density Based Spectral Clustering

and Noise (DBSCAN), k-means and gradient boosting.

Whilst HAC was able to effectively discriminate between the reference particles, yielding a classification error of only

1.8%, similar results were not obtained when testing on laboratory generated aerosol where the classification error was found15

to be between 11.5% and 24.2%. Furthermore, there is a worryingly large uncertainty in this approach in terms of the data

preparation and the cluster index used, and we were unable attain consistent results across the different sets of laboratory

generated aerosol tested.

The best results were obtained using gradient boosting, where the misclassification rate was between 4.38% and 5.42%. The

largest contribution to this error was the pollen samples where 28.5% of the samples were misclassified as fungal spores. The20

technique was also robust to changes in data preparation provided a fluorescent threshold was applied to the data.

Where laboratory training data is unavailable, DBSCAN was found to be an potential alternative to HAC. In the case of

one of the data sets where 22.9% of the data was left unclassified we were able to produce three distinct clusters obtaining a

classification error of only 1.42% on the classified data. These results could not be replicated however for the other data set

where 26.8% of the data was not classified and a classification error of 13.8% was obtained. This method, like HAC, also25

1

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-126
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 18 June 2018
c© Author(s) 2018. CC BY 4.0 License.



appeared to be heavily dependent on data preparation, requiring different selection of parameters dependent on the preparation

used. Further analysis will also be required to confirm our selection of parameters when using this method on ambient data.

There is a clear need for the collection of additional laboratory generated aerosol to improve interpretation of current

databases and to aid in the analysis of data collected from an ambient environment. New instruments with a greater reso-

lution are likely improve on current discrimination between pollen, bacteria and fungal spores and even between their different5

types, however the need for extensive laboratory training data sets will grow as a result.

1 Introduction

Biological aerosol, such as bacteria, fungal spores and pollen have important implications for public health and the environment

(Després et al., 2012). They have been linked to the formation of cloud condensation nuclei and ice nuclei which in turn may

have important influence on the weather (Crawford et al., 2012; Cziczo et al., 2013; Gurian-Sherman and Lindow, 1993; Hader10

et al., 2014; Hoose and Möhler, 2012; Möhler et al., 2007). The particles have impacts on health (Kennedy and Smith, 2012),

particularly for those who suffer from asthma and allergic rhinitis (D’Amato et al., 2001).

It is therefore of paramount importance that we continue to develop methods of detecting these particles, to quantify them,

determine seasonal trends and to compare different environments. One such method for detecting biological aerosol is to use

an ultraviolet light induced fluorescence (UV-LIF) spectrometer such as the Wideband Integrated Bioaerosol Spectrometer15

(WIBS). Particles with different concentrations of the chemical fluorophores tryptophan and NADH will provide different

responses when excited. In addition to the fluorescence measurements collected, a measurement of size and shape for each

particle is taken to further aid in discrimination.

These measurements have limited application in isolation. However, data analysis techniques, such as those available within

the field of machine learning, are potentially able transform these measurements into quantities of pollen, bacteria and fungal20

spores. There are a variety of machine learning algorithms that are applicable to solving this classification problem, and they

can be divided broadly into two groups: supervised and unsupervised.

It is not clear whether the supervised or unsupervised approach is to be preferred as both approaches have their advantages

and disadvantages. Supervised machine learning uses data, usually collected within laboratory settings, where the correct

classification is known. Subsequently, this data is split into training data and testing data. The training data is used to fit a25

model which is then validated using the test set. Once the model is fitted and validated it may then be applied to ambient data.

During unsupervised analysis, ambient data is classified without using training data from the laboratory. Instead, an attempt

is made to split the data into groups using natural differences in the data. Ideally the data would be naturally split into broad

biological classes, but this may not necessarily be the case. Instead, for example, two sets of similar bacteria and fungal spores

could be grouped together.30

The supervised methods, including gradient boosting, have the disadvantage that the training data collected may not include

the entirety of what may be collected during an ambient campaign. Particularly in an urban environment, the instrument will

collect a large quantity of non-biological material that will still need to be either classified as such or removed from the analysis.
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We would expect most of this non-biological material to either be non-fluorescent or weakly fluorescent and therefore it should

be removed prior to analysis by applying a justifiable threshold to the fluorescent measurements (see Section 2.2). Nonetheless,

a few weakly fluorescent non-biological particles may remain and could be overlooked if the training data is incomplete.

Clearly there are issues to be explored with either approach, therefore it seems unlikely that we will be able to abandon

either supervised or unsupervised techniques at this point in time.5

In an ambient setting, determining the number of clusters is difficult so Hierarchical Agglomerative Clustering (HAC) has

been the preferred method over other methods such as k-means since the method naturally presents a clustering for all possible

number of clusters (Robinson et al., 2013). A suggestion of the number of clusters can then be provided using indices such

as the Caliński Harabasz Index (CH Index) (Caliński and Harabasz, 1974) by maximising a statistic which yields a peak for

clusterings which contain clusters that are compact and far apart. HAC has previously been used on data collected using the10

WIBS to discriminate between different Polystyrene Latex Spheres (PSLs) and has been applied to ambient measurements

collected as part of the BEACHON RoMBAS experiment (Crawford et al., 2015; Gallagher et al., 2012; Robinson et al.,

2013).

Nonetheless, little has been done to demonstrate the effectiveness of HAC on laboratory generated aerosol. Evaluating the

effectiveness of HAC on generated aerosol is crucial to support or repudiate conclusions made using HAC on ambient data,15

especially since the fluorescence response from the laboratory generated aerosol will much better reflect fluorescence responses

from the environment, when compared with PSLs.

During the process of HAC there are also a number of vital choices that have to be made, that could have a substantial

implication on the effectiveness of the method (these are discussed in detail in Section 2.2). For the PSLs previously analysed

(Crawford et al., 2015), we determined standardising using the z-score, with removal of non-fluorescent particles, taking20

logarithms of shape and size was most effective. The CH index was selected to determine the number of clusters as it was

demonstrated to perform best in the literature (Milligan and Cooper, 1985). It is however, not clear whether these choices

will remain the most effective for laboratory generated aerosol nor ambient data. See Section 2.3 for further details on data

preparation for HAC.

Furthermore, data analysis using HAC can take a matter of hours, if not days depending on the number of particles. The25

time requirements for HAC are between N2 and N3 meaning that a doubling of the number of particles will require between

four and eight times as much time. This means that not only is the method already quite slow, but will get increasingly slower

as more data is collected. This may limit the real time effectiveness of the method.

Within the Python programming language, a package called Scikit-learn (Pedregosa et al., 2011) offers implementations of

several unsupervised methods. Some of these methods i.e. Affinity Propagation, Mean-shift, Spectral Clustering and Gaussian30

mixtures are not explored as they will scale poorly as the number of particles increases (Pedregosa et al., 2011). Instead, our

analysis is focused on K-means, HAC and DBSCAN which can be used on larger data-sets.

For HAC we continue to use the fastcluster package (described in Section 2.3). Sklearn does have a HAC implementation

but it is not as fast or memory efficient. We do use sklearn for DBSCAN and kmeans, although if one was to use DBSCAN

for ambient data we would suggest exploring alternatives such as ELKI (Schubert et al., 2015) as the sklearn implementation35
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Figure 1. Overview of different analysis approaches

of DBSCAN by default is not memory efficient making it difficult to utilise for more than 30,000 particles. Sklearn has a fast

implementation for Gradient Boosting, so this is used.

2 Methods

In this section we discuss the variety of approaches that could be used to classify particles such as bacteria, fungal spores or

pollen. In Section 2.1 we provide an overview of the instrument used to collect the data. In Section 2.2 we discuss the variety5

of decisions that need to be made prior to passing the data to the machine learning algorithms which are discussed in Sections

2.3 - 2.6. An overview of the different methods is given in Figure 1.
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Figure 2. Overview of preprocessing steps for WIBS data

2.1 Instrumentation

The Wideband Integrated Bioaerosol Sensor (WIBS) collects size, shape and fluorescence measurements (Kaye et al., 2005).

The size is a single measurement; the shape measurement consists of four measurements (one for each quadrant) which are

combined to produce a single asymmetry factor measurement. Four fluorescence measurements are collected by firing a flash

lamp at 280nm and 370nm and detecting the resultant fluorescence on two fluorescence detectors. The measurement collected5

using the second detector from the excitation at 280nm is ignored as it saturates the instrument. After removal of this fluorescent

measurement, there are three remaining fluorescence measurements which are combined with the size and asymmetry factor

measurements. A more detailed description of the instrument can be found in previous publications (e.g. Gabey et al., 2010;

Healy et al., 2012a)

2.2 Data preparation10

Prior to analysis using the machine learning algorithm we may choose to make a variety of decisions to pre-process the data

with the aim to improve performance (see Figure 2). An overview for the decisions often made are outlined below.

First we may elect to remove particles which are non-fluorescent. Forced trigger data is collected which is a measurement

of the instrument response when particles are not present. We then set a threshold, for which if a particle fails to exceed

this threshold in at least one of the fluorescent channels we conclude that the particle is non-fluorescent. Usually we set the15

threshold to be three standard deviations above the average forced trigger measurement although a recent laboratory study has

suggested that nine standard deviations may be more appropriate (Savage et al., 2017).

Another threshold is usually then applied to the size. A size threshold of 0.8µm is usually applied as detection efficiency of

the instrument drops below 50% at this point. (Gabey, 2011; Gabey et al., 2011; Healy et al., 2012b).

Natural logarithms of the size and the asymmetry factor are often taken as these measurements are often log normally20

distributed and it is postulated that this will increase performance in the case of hierarchical agglomerative clustering.

It is also widely regarded that standardising the data prior to analysis is utmost importance (Milligan and Cooper, 1988). We

often subtract the average measurement in each of the five variables and divide by the standard deviation, often referred to as
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’standardising using the z-score’. Standardisation is used to prevent variables with larger magnitude, such as the fluorescent

measurements, from dominating the analysis. An alternative approach to standardising is to divide each of the five variables by

the range.

2.3 Hierarchical Agglomerative Clustering

In order for particles to be clustered, we need to define a measurement of how similar two clusters are. These similarity5

measures are often referred to as linkages. We use the Python package fastcluster (Müllner, 2013) which provides modern

implementations of single, complete, average, weighted, Ward, centroid and median linkages (Müllner, 2011). A thorough

detailing of the definitions of the different linkages can be found in the fastcluster manual (Müllner, 2013). For the memory

efficient mode, which is essential when using the algorithm for large data sets, only Ward, centroid, median and single linkages

are available.10

Initially each particle is placed into an individual cluster. Next, using the linkage selected, the two most similar clusters are

merged. The merging process is repeated until all the particles are placed in a single cluster, which provides a clustering from

k = 1, · · · ,N , where k is the number of clusters and N is the number of particles being analysed. A cluster validation index

such as the Calinski-Harabasz index (Caliński and Harabasz, 1974) is then used to identify an appropriate number of clusters.

The index is maximised for clusterings that contain compact clusters that are far apart.15

2.4 K-Means Clustering

K-Means clustering is designed to place particles into k clusters. However we can repeat the method multiple times e.g. for

k = 1,2, · · · ,10, where k is the number of clusters. Similar to HAC we can then use a cluster validation index to determine

which choice of k gives the most effective results.

The method works as follows. Initially k cluster centroids are set by selecting k particles at random. The rest of the particles20

are then placed into these k clusters depending on which of the centroids the particle is closest to. At this point a new centroid is

calculated for each cluster. The process is then repeated many times until convergence occurs and the centroids do not change

significantly from one iteration to the next.

2.5 DBSCAN

For DBSCAN we set two parameters, the radius for a neighbourhood ε, and the number of particles required for a neighbour-25

hood to be identified as dense.

Initially a random point, say A, is selected. If there are sufficient number of points in the neighbourhood of A then all the

points in A’s neighbourhood are also checked and so on, until the cluster has fully expanded and there are no points left to

check. Should the point not have a sufficient number of other points in its neighbourhood then it is left unclassified. Further

points are then selected and the above process is repeated until all points have been considered.30
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\  

Figure 3. Visual representation of DBSCAN. Here each point is represented as a black dot and it’s neighbourhood is represented by a circle.

Here ε is the radius of the circle and the minimum number of points is 3. Four points have each been placed into the blue cluster and green

cluster, all of which having at least 3 other points in their neighbourhood. One point is classified as noise as it has only 1 other point in it’s

neighbourhood.

We give an example of DBSCAN in Figure 3. Note that cluster validation indices are not required for DBSCAN, since the

number of clusters is intrinsically calculated within the algorithm.

2.6 Gradient Boosting

A basic decision tree is constructed by considering each possible split across all variables and evaluating which split best

divides the data. For example, we may consider the third fluorescence channel and split the data on the basis of whether the5

measurement is more or less than 10 arbitrary units (AU). This process is then repeated many times until a tree is built.

There are two ways in which trees can be combined into an ensemble. The first is by averaging multiple trees in the hope

to produce a more accurate classification. This is known as a Random Forest. Here the data-set is sampled with replacement,

meaning that the same particle could be selected more than once or not at all. Sampling in this way enables the algorithm to

produce a subtly different version of the data from which to build each tree. In addition, instead of considering all possible10

variables to use to split the data, only a random subset is used.

Alternatively we can fit a single decision tree to the data, evaluate where the tree is performing well and then fit a second tree

to the particles in the data for which the current model is performing poorly. This process can be repeated many times, each

time adding a new tree to the model in the hope of making an improvement. This approach is known as AdaBoost. Gradient

Boosting is an extension of AdaBoost to allow for other loss functions.15

For the current study we elect to use Gradient Boosting to indicate the performance of the supervised approach since it was

the best performer for the Multiparameter Bioaerosol Spectrometer, a similar UV-LIF spectrometer similar to the WIBS but

with single waveband fluorescence, 8 fluorescence detection channels and very high shape analysis capability (Ruske et al.,

2017).
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Figure 4. Average fluorescent characteristics for the different aerosol samples collected in 2008

3 Data

The efficacy of the different data analysis approaches was evaluated using three different data sets. The first of which comprised

several industry standard polystyrene latex spheres of various different sizes and colours. This data set was first analysed in

Crawford et al. (2015), where Hierarchical Agglomerative Clustering was successfully applied to the data yielding a classifi-

cation accuracy of 98.2%. This data set presents a simple challenge for which we would expect any reasonable algorithm to be5

able to discriminate between the different sizes and colours of particles.

To further extend the previous analysis in Crawford et al. (2015) we include two previously unpublished data sets from

2008 and 2014 which are similar to data previously published using the Multiparameter Bioaerosol Spectrometer (Ruske et al.,

2017). These data sets consist of various different pollen, fungal, bacterial and non-biological samples, and should present a

much more difficult challenge for the algorithms.10

The samples of laboratory generated aerosol were collected as follows. Material was aerosolised into a large, clean HEPA

filtered chamber, which incorporated a recirculation fan. The Bacillus atrophaeus and Escherichia coli (E.coli) bacteria were

aerosolised into the chamber using a mini-nebuliser (e.g. Hudson RCI Micro-Mist nebuliser) as were the salt and phosphate

buffered saline samples. The dry samples, which included the pollen, and fungal samples were aerosolised directly into the

chamber from small quantities of powder utilising a filtered compressed air jet. The diesel smoke and grass smoke samples15

were generated by burning a small amount within a fume cupboard using a smoker (piece of bespoke equipment).

We present a summary of the number of particles for each sample in total as well as when using a fluorescent threshold of

3σ and 9σ in Tables 1 and 2. Plots of the average fluorescent characteristics and size and shape for each sample are provided

in Figures 4 and 5. Plots and tables for the polystyrene spheres previously published in Crawford et al. (2015) are omitted.

For most of the interferent particles we see that a fluorescent threshold of either 3σ or 9σ will remove the vast majority20

of these particles. The exception to this is in the case of the 2008 data we are unable to remove a significant number of the
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Table 1. Counts of different aerosols collected in 2008 before and after a fluorescent threshold is applied.

ID Sample # # (3σ) # (9σ) Classification

A Bacillus

atrophaeus

30946 12631 3239 bacteria

B E.coli 15237 8332 3681 bacteria

C Bermuda grass

smut

5220 2681 423 fungal

D Johnson grass

smut

7248 3882 637 fungal

E Paper-

mulberry

1030 630 312 pollen

F Ragweed

pollen

569 332 151 pollen

G Birch pollen 164 111 56 pollen

H Grass smoke 14457 3357 299 interferent

I Diesel smoke 7900 11 5 interferent
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Figure 5. Average fluorescent characteristics for the different aerosol samples collected in 2014

grass smoke samples even using a fluorescent threshold of 9σ, providing an example of an interferent that does fluoresce in the

instrument.

9

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-126
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 18 June 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 2. Counts of different aerosols collected in 2014 before and after a fluorescent threshold is applied.

ID Sample # #(3σ) #(9σ) Classification

A Bacillus

atrophaeus

6217 3050 1292 bacteria

B E.coli 2534 1290 632 bacteria

C Puffballs 3919 555 252 fungal

D Aspen pollen 398 74 31 pollen

E Poplar pollen 375 104 50 pollen

F Paper-

Mulberry

565 541 537 pollen

G Ryegrass 47 21 15 pollen

H Fullers’ Earth 3226 35 3 interferent

I NaCl 2197 3 0 interferent

J Phosphate

Buffered

Saline

3064 61 20 interferent

Table 3. Outline of the different approaches tested when using Hierarchical Agglomerative Clustering

Consideration Option

Take Logs True or False

Size Threshold None or 0.8

Fluorescent Threshold None, 3σ or 9σ

Standardisation Z-score or Range

Linkage Ward, Centroid, Median or Single

4 Results

4.1 Hierarchical Agglomerative Clustering

Usually when using Hierarchical Agglomerative Clustering we use the following data preparation strategy: take logs of the size

and the asymmetry factor, apply a size threshold of 0.8 microns, apply a fluorescent threshold of 3 or more recently 9 standard

10
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Figure 6. Performance of Hierarchical Agglomerative Clustering using the adjusted rand score for the data sets tested across different data

preparation strategies. The number of clusters concluded in each case is indicated at the bottom of each bar.

deviations and standardise using the z-score. This approach is used as it has been demonstrated to be the most effective for the

PSL data previously tested. We varied this approach by using a variety of different data preparation methods outlined in Table

3.

In Figure 6 we outline how well Hierarchical Agglomerative Clustering performed when using the standard strategy vary-

ing between 3σ and 9σ, and how well the algorithm worked with the best data preparation strategy across all 96 possible5

combinations of options for each data set.

First, we see that the high performance achieved for the PSLs (AR = 0.958), previously studied in Crawford et al. (2015),

could not be fully extended to the laboratory generated aerosol studied where the highest adjusted rand score attained was

0.567 and 0.747 in 2008 and 2014 respectively. This is to be expected as the laboratory generated aerosol particles are much

more complex, and therefore more difficult to differentiate.10

We note the best performing data strategy for the PSL’s previously studied (Crawford et al., 2015) was not the best performing

for the laboratory generated aerosol. For the data set collected in 2008, the best strategy was found to be: taking logs; using a

size threshold of 0.8 microns; using 3 standard deviations as a fluorescent threshold; standardising using the range; and using

Ward linkage. In 2014, the best results were obtained by not taking logs, not applying a size threshold, using a fluorescent

threshold of 9 standard deviations and using the centroid linkage.15

In addition, there was a substantial difference between the quality of results attained for 3 standard deviations vs. 9 standard

deviations. In 2008, we see a decrease in the adjusted rand score from 0.482 to 0.277 when using 3 and 9σ respectively. In

2014, we see an increase in the adjusted rand score from 0.462 to 0.625 when using 3 and 9σ respectively. So not only is there

a substantial difference between the quality of results dependent on the data preparation technique used, but the difference is

inconsistent across different data sets.20
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Table 4. Matching matrix for the best case scenario when using the current data preparation strategy with 9σ on the data collected in 2014

bacteria fungal spores pollen non-biological

CL1 4 80 13 5

CL2 85 4 550 3

CL3 1835 168 70 15

Table 5. Matching matrix for the worst case scenario when using the current data preparation strategy with 9σ on the data collected in 2008

bacteria fungal spores pollen non-biological

CL1 547 69 298 0

CL2 6373 991 221 304

It is indeed the case that the data preparation approach currently used could be improved upon for the laboratory gener-

ated aerosol. However, due to inconsistencies in results across different data-sets it becomes difficult to provide an accurate

recommendation as to what data preparation strategy should be used for hierarchical agglomerative clustering.

The adjusted rand score is often quite difficult to interpret, so we provide matching matrices for the best and worst case

scenario using the current data preparation strategy in Tables 4 and 5. In the best case scenario we are able to discriminate5

between the pollen and the rest of the data placing 86.8% of the pollen into Cluster 2. Most of the bacteria is also placed into

Cluster 3 with 66.6% of the fungal spores. A third of the fungal spores are differentiated from the rest of the data and placed

into Cluster 1. In the worst case scenario two clusters are provided both primarily containing bacteria. In this case we can

conclude that algorithm has failed to differentiate between any of the biological classes.

From Figure 6, it is clear that data preparation strategy can have a substantial impact upon the quality of clustering results.10

From Tables 4 and 5 we demonstrate that for a particular data preparation approach the quality of the clustering results could

vary substantially across the different data sets. Therefore, it is important that in future analysis one should demonstrate that a

particular data preparation performs consistently across a variety of different types of samples and performance is repeatable.

4.2 DBSCAN

One of the main difficulties of using DBSCAN is selecting the minimum number of points to form a neighbourhood and the15

radius of the neighbourhood (Khan et al., 2014). For 9σ and 3σ using z-score, taking logs of the size and asymmetry factor

and removing particles smaller than 0.8 microns we repeat the DBSCAN algorithm for a variety of ε (neighbourhood radii)

and minimum number of points values. The range of values of ε we test is 0.1,0.2, · · · ,1.0. The range of minimum number of

points is set using the following range relative to the number of particles collected 0.1%,0.2%, · · · ,1.0%,2.0%, · · · ,10.0%.

We found wide variety of performance across the different parameters. Often high accuracy could be obtained when using20

a high value of the minimum number of points but this resulted in removing a substantial portion of the data. In Figure 7 we
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Figure 8. Adjusted rand score for DBSCAN, over a range different values of ε and minimum number of points required to form a neighbor-

hood. The minimum number of points is expressed relative to the total number of points. The columns correspond to 3 and 9σ respectively.

The rows correspond to the PSL, 2008 and 2014 data respectively.

filter our results using a range of thresholds for the maximum number of points that can be left unclassified (5%,10%, · · ·60%)

and plot the corresponding best performance under this filter. In all the data sets there was a point of diminishing returns where

no further benefit could be attained by removing any more of the data. In the case of the PSL data, this point happened after

removing around 5% of the particles. For the laboratory data sets between 25 and 40% of the data was left unclassified before

a peak in performance was attained. Nonetheless, we note in the case of the laboratory data collected in 2014 and using a 9σ5

fluorescent threshold, we can attain performance similar to that which we attain for the PSL data.

In order to investigate further a choice of ε and the minimum number of points which would maximise performance in terms

of the adjusted rand score we plot the adjusted rand score for each test across all of the data sets. In Figure 8 we see that there is

a large window of different values for which a higher value of the adjusted rand score can be achieved on the PSLs. Contrary to
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Table 6. Matching matrix for the best case scenario when using DBSCAN with 9σ, ε= 0.4 and a minimum number of points of 0.7% on

2014 data.

bacteria fungal spores pollen non-biological

Unclassified 329 169 134 16

CL1 0 0 490 0

CL2 12 80 4 0

CL3 1583 3 5 7

Table 7. Matching matrix for the worst case scenario when using DBSCAN with 3σ, ε= 0.3 and a minimum number of points of 0.4% on

2008 data

bacteria fungal spores pollen non-biological

Unclassified 5858 1893 636 752

CL1 15025 15 44 2616

CL2 80 4655 393 0

this, in 2008 when using 9σ there is a very narrow window for which higher values of the adjusted rand score could be attained.

It can also be seen that as ε increases the number of points required to create a cluster needs to be increased to compensate.

Overall our results indicate setting ε= 0.3 and ε= 0.4 when using 3σ and 9σ respectively. Best results can then be obtained

by setting the number of points between 0.4% and 0.7% of the data when using an ε of 0.3 and 0.7% and 1.0% when using

an ε of 0.4. However, future research will be required to demonstrate these conclusions are applicable when studying ambient5

data.

We provide matching matrices for the worst and best case scenarios in Tables 6 and 7. We see that in the best case scenario,

leaving a decent proportion of data left unclassified we are able to produce three distinct clusters containing predominantly

one broad class of biological aerosol. In the worst case scenario we manage only to distinguish between the bacteria from the

fungal spores combined with the pollen.10

In the worst case scenario i.e. using 3σ, on the 2008 data we fail to remove a sizable fraction of the non-biological particles,

which was also the case when using HAC, however we would have expected that the algorithm would leave the particles

unclassified. There is some argument that this worst case scenario could be circumvented by simply using the 9σ threshold

instead. But further research needs to be conducted on the handling of non-biological material that appears fluorescent in the

instrument.15
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Figure 9. Performance of Gradient Boosting for the different data sets when using 3σ and 9σ.

4.3 Gradient Boosting

We conducted a similar analysis varying data preparation approaches as in Section 4.1. We found data preparation to have a

very small impact upon performance when using Gradient Boosting as long as some kind of fluorescence threshold is applied

where a high value of the adjusted rand score was obtained regardless of whether we took logs, what standardization was used

or the size threshold imposed.5

Figure 9 shows the performance using 3σ and 9σ using z-score, taking logs and applying a size threshold of 0.8 microns.

High performance was attained across both laboratory generated aerosol data sets and for the PSLs. As we did in the previous

sections we provide matching matrices of the worst-case scenario and best case scenario when using Gradient Boosting using

the current data preparation in Tables 8 and 9. In the best case scenario we provide a very good classification with very

small errors (AR=0.919). The algorithm does a poor job with the remaining non-biological material but there are only 13 non10

biological particles left for this data set, so the algorithm has very little to train on, but these few particles have very little

impact on the quality of the result.

In the worst case scenario a similar performance is achieved (AR = 0.877). Nonetheless, a few particles are incorrectly

classified within the fungal spore and pollen classes. The classification for the bacteria is still very strong and most of the

remaining non-biological particles are correctly classified.15

5 Conclusions

We evaluated a variety of different methods that could be used for classification of biological aerosol. Gradient Boosting offered

by far the best performance consistently across different data preparation strategies and the different data sets tested. That being

said it is unclear at this point how this will translate to ambient data and whether or not the training data currently collected

will be sufficient to outline the variety of environments that could potentially be studied.20
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Table 8. Matching matrix for the best case scenario when using Gradient Boosting. This is when using 9σ on 2014 data.

bacteria fungal spores pollen non-biological

bacteria 1908 8 18 10

fungal spores 6 216 31 7

pollen 6 23 584 5

non-biological 4 5 0 1

Table 9. Matching matrix for the worst case scenario when using Gradient Boosting. This is when using 9σ on 2008 data.

bacteria fungal spores pollen non-biological

bacteria 6852 89 79 7

fungal spores 51 892 148 3

pollen 9 75 288 1

non-biological 8 4 4 293

Should there not be sufficient training data available we will have to use an unsupervised approach. In this case, a possible

alternative to Hierarchical Agglomerative Clustering is found. In the best case scenario DBSCAN, despite leaving a decent

proportion of the data unclassified, was able to produce three distinct clusters containing predominantly one biological class

each.

To the best of our knowledge this is the first manuscript using DBSCAN to classify biological aerosol using the WIBS. So5

we will need to continue to evaluate the performance of this algorithm in the context of the ambient setting. In particular, we

have provided details of what we believe to be sensible selections of epsilon and the minimum number of points on the basic of

the laboratory data collected. However, it is unclear at this point how effective these selections will be when analysing ambient

data.

It is clear that Hierarchical Agglomerative Clustering certainly has it drawbacks. When applied the laboratory generated10

aerosol tested, we found that performance was in general much lower than what could be achieved for the PSLs. Performance

was heavily dependent on the data preparation strategy used and often results could vary substantially between different strate-

gies and data sets. Caution will therefore be required when applying the algorithm to ambient data.

In the future, more laboratory generated aerosol particles will need to be collected to continue to evaluate the performance

of the algorithms which we use. In addition, even when Gradient Boosting was used we failed to classify the some of the15

pollen and fungal spores analysed. It is possible that higher spectral instruments will be required to provide a more accurate

classification.
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Code and data availability. The code used produce the above manuscript is part of an ongoing development of a software suite for analysis of

various UV-LIF instruments, which will be made public at https://github.com/simonruske/UVLIF upon publication. Other code not currently

included within the software package i.e. code files which are used to produce the plots and figures specific to this paper will be made

available on the same site but placed into a different repository.

The data used is available upon request by contacting the lead author.5
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